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Abstract: Mathematica is employed in the symbolic computation implementation of a hybrid numerical-analytical solution for 
transient laminar forced convection over flat plates of non-negligible thickness, subjected to arbitrary time variations of applied 
wall heat flux from above. This conjugated conduction-convection problem is first simplified by employing the Coupled Integral 
Equations Approach (CIEA) to reformulate the heat conduction problem on the plate by averaging the related energy equation in 
the transversal direction. As a result, a partial differential formulation for the average wall temperature is obtained, while a third 
kind boundary condition is achieved for the fluid in the heat balance at the solid-fluid interface. An approximate solution is then 
proposed for the coupled partial differential equations by combining the classical integral method for the boundary layer equations 
and the method of lines implemented in the Mathematica routine NDSolve. The integral method is initially employed to yield 
polynomial approximations for both the steady velocity field and the transient temperature field within the fluid. Then, the governing 
partial differential equation for the ratio of thicknesses of the boundary layers is symbolically determined, from the solution of the 
related integral form of the energy equation in the transient state. Numerical solution for the thermal boundary layer thickness and 
for the average solid temperature is then obtained through the automatic use of the built in function NDSolve, yielding the time 
evolution and the longitudinal distribution of these parameters, for any specific prescribed wall heat flux time function. Finally, 
local heat transfer coefficients are readily determined from the wall temperature distributions, as well as the temperature values at 
any desired point within the fluid.  
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1. Introduction  
 

Forced convection over solid surfaces is usually studied by neglecting the participation of the wall in the heat 
transfer process through imposition of temperature or heat flux, as in the classical thermal boundary layer problem 
(Kays and Crawford, 1980, Schlichting, 1968, White, 1974), at the fluid-solid interface. The inclusion of wall 
conduction effects is of major relevance to the accurate prediction of heat transfer rates, but brings up a conjugated 
conduction-convection problem of a more involved nature when the full energy equations for both fluid and solid are to 
be solved simultaneously. Early work on approximate analytical solutions in both external and internal flows (Luikov et 
al., 1971, Mori et al., 1974) demonstrates the mathematical difficulties involved in handling this mixed parabolic-
elliptic formulation. More recently, the advancement of purely numerical approaches has allowed for the computational 
handling of such classical problems in heat transfer, but has also confirmed the high computational costs for the 
accurate solution of coupled conduction-convection problems, governed by an increased number of parameters. 
However, simpler models have been proposed in the literature concerned with duct flows (Shah and London, 1978) that 
radially or transversally lump the temperature distribution at the duct wall, but retain the axial conduction information 
along the wall, thereby reducing the number of parameters to be explicitly considered. The simplified model is expected 
to be particularly useful in reducing computational costs and analytical involvement, aspects explored by previous 
works in channel flow, under different solution methodologies (Faghri and Sparrow, 1980, Zariffeh et al., 1982, 
Wijeysundera, 1986, Guedes et al.,1989, Guedes et al., 1991). The simple lumped formulation, although expected to be 
more adequate in the range of parameters that provides a not so significant radial or transversal temperature gradients 
within the wall, has been checked only briefly against numerical solutions that consider the two-dimensional effects 
(Pagliarini, 1988). In addition, for the duct flow situation, transient analysis is quite limited and only a few situations of 
periodic inlet and boundary conditions disturbances were previously considered, which lead to quasi-steady 
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formulations, with or without longitudinal wall heat conduction (Guedes and Cotta, 1991, Guedes et al., 1994, Sucec, 
2002, Fourcher and Mansouri, 1998, Mansouri et al., 2004). Similarly, the transient analysis of conjugated conduction-
external convection is still quite restricted and a few contributions have been offered based on approximate analytical 
methodologies (Pozzi and Tognaccini, 2000, Lachi et al., 2002, Lachi et al., 2003, Lachi et al., 2004-a). 

The present work first brings a reformulation strategy to this class of transient conjugated conduction-external 
convection problems through application of the ideas in the coupled integral equations approach (CIEA) (Cotta and 
Mikhailov, 1997, Aparecido and Cotta, 1989 and Correa and Cotta, 1998), in order to allow for the simplification of the 
heat conduction formulation at the wall. Therefore, an improved lumping procedure is applied to the wall transversal 
direction, offering a simpler transient one-dimensional formulation for conduction along the wall, in terms of the 
transversally averaged temperature. 

This so-called coupled integral equations approach (CIEA) is employed as a formulation simplification technique 
for the heat conduction problem, aimed at reducing the number of independent variables involved in the mathematical 
formulation, through an improved lumping procedure on those coordinates selected to be removed, in this case the 
transversal direction. The resulting lumped-differential formulation offers substantial enhancement over classical 
lumping schemes (Shah and London, 1978) in terms of accuracy, without introducing additional complexity in the 
corresponding final simplified differential equations to be handled. The approach is here demonstrated through a 
representative transient conjugated conduction-convection problem, for laminar air flow over a flat plate heated at the 
fluid-solid interface, and the enhancement characteristics are examined against the numerical solution of the fully 
differential formulation for the conduction problem. 

Second, the approximate lumped-differential formulation for the solid-fluid interface facilitates the utilization of the 
classical Integral Method for thermal boundary layer analysis, (Kays and Crawford, 1980, Schlichting, 1968, White, 
1974), in approximating the fluid temperature distribution and determining the transient thermal boundary layer 
thickness. In this approach, also quite popular in heat conduction analysis (Ozisik, 1980), the dependent variable is 
approximated by a prescribed functional form in one of the spatial variables, in general in a polynomial form, followed 
by the solution for the coefficients in such approximate formulation, as a function of the remaining independent variable 
(time or another space variable). In obtaining these coefficients, one attempts to satisfy boundary and initial conditions, 
as well as other asymptotic information of the original problem, in direct relation with the number of coefficients to be 
determined according to the proposed functional approximation. It is indeed a rather simple approximate analytic 
approach, with recognized practical importance, particularly in the analysis of non-similar problems in external 
convection.  

Although less cited in scientific research along the last few years, due to the wider availability of computational 
resources for simulations in fluid mechanics and heat transfer, the interest on this type of approach remains, essentially 
due to its simplicity and fairly ample applicability. While the Integral Method has been widely employed in the solution 
of steady-state external convection problems, and is well-documented even in various textbooks such as the above cited, 
much less information is readily available in its use within transient situations caused by temporal fluctuations of either 
wall or fluid conditions. Nevertheless, a number of fairly recent contributions in this direction have favored the use of 
this also called Karman-Polhausen approach in the approximate analysis of both impulsively and periodically heated 
walls (Lachi et al.,1998, Polidori, et al.,1998, Lachi et al., 2004-b). The preferred solution path has therefore been the 
combined use of the Integral Method with a discrete approach for the numerical solution of the resulting partial 
differential equation for the wall temperature time evolution and longitudinal variation. This approach has also been 
validated against direct numerical solutions of the original partial differential problem and differential-similarity 
solutions of the transient boundary layers. On the other hand, symbolic computation platforms have been allowing for 
the revision and extension of a number of analytical procedures, either classical or more recently advanced, which to a 
certain extent have lost importance or were even almost abandoned from engineering practice, in light of the progress 
achieved along the last few decades by direct numerical analysis through traditional algorithm languages.  

Besides the various possibilities open up through the symbolic derivation of previously just too tedious analytical 
approaches, a large number of hybrid developments have been observed, in different classes of engineering problems, 
merging automatic analytical derivations and modern numerical procedures with embedded error control (Cotta and 
Mikhailov, 1997). In this sense, the present work involves the construction of a Mathematica notebook (Wolfram, 
1999) that deals with the approximate solution of the boundary layer equations for transient convective heat transfer of 
a Newtonian fluid flowing over a flat plate of non-negligible thickness, in laminar incompressible regime. The 
transients are caused by an arbitrary time variation of the applied uniform wall heat flux at the solid-fluid interface. 
After the reformulation of the wall heat conduction problem, as above discussed, the solution proceeds to the utilization 
of the Integral Method to obtain approximate polynomial approximations for the steady velocity and transient 
temperature fields in the fluid. From the integral form of the thermal boundary layer equation, a partial differential 
equation for the thermal boundary layer thickness is established, feasible of being numerically handled by the 
Mathematica system.  

For this purpose, we employ the built in function NDSolve, which employs a Method of Lines approach to 
numerically solve the two coupled PDEs, for the thermal boundary layer thickness and for the average wall 
temperature. From this point, results for the interface temperature and heat fluxes are provided, in terms of the time 
variation of the thermal boundary layer thickness, for any arbitrary prescribed interface heat flux time variation. For 
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illustration of the proposed symbolic-numerical approach, a typical application dealing with air heating (Lachi et al., 
2006) and with the wall conjugation was here considered more closely, for different wall materials and thicknesses, 
including different functional forms for the applied wall heat flux at the fluid-solid interface, which may also include an 
unheated starting length. This configuration is of particular interest in the so-called pulse method for the experimental 
determination of heat transfer coefficients in the transient regime (Petit et al., 1981, Remy et al., 1995, Rebay et al., 
2002), which provide the main motivation for the present effort of reaching an approximate hybrid numerical-analytical 
solution for the conjugated problem. 
 
2. Problem Formulation 
 

We consider laminar flow of a Newtonian fluid over a flat plate, with steady-state incompressible flow but transient 
convective heat transfer due to an arbitrarily varying delivered heat flux, φ(x,t), applied at the solid-fluid interface. This 
situation corresponds to the flash experiment for the determination of transient heat transfer coefficients in external 
convection (Petit et al., 1981, Remy et al., 1995, Rebay et al., 2002). The fluid flows with a free stream velocity U∞ , 
which arrives at the plate front edge at the temperature T∞ , as described in Fig. (1). 
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Figure 1. Description of the physical problem for transient conjugated  
external forced convection and wall heat conduction 

 
The wall is considered to participate on the heat transfer problem, due to its thickness, e, length, L, and associated 

thermo-physical properties. The boundary layers equations are assumed to be valid for the flow and heat transfer 
problem within the fluid. The conjugated conduction-convection problem is mathematically described as: 
Continuity: 
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Momentum in x-direction: 
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Momentum in y-direction: 
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where U is the longitudinal velocity component, m.s-1, V is the transversal velocity component, m.s-1, ν is the kinematic 
viscosity, m².s-1 and δ(x) is the velocity boundary layer thickness, m. 

The flow problem solution is considered known at this point, by any of the known approximate analytical or 
numerical solution techniques, and the associated fluid and wall energy equations are given by: 
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with initial conditions  
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and boundary and interface conditions: 
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where Tf  is the fluid temperature, °C, Ts is the wall temperature, °C, δt(x) is the thermal boundary layer thickness, m, αf 
is the thermal diffusivity (fluid), m2.s-1, αs is the thermal diffusivity (solid), m2.s-1, kf  is the thermal conductivity (fluid), 
W. m-1 .K-1 and ks is the thermal conductivity (solid), W. m-1 .K-1. 
 
3. Coupled Integral Equations Approach (C.I.E.A.) 
 

The coupled integral equations approach (C.I.E.A.) is a very straightforward reformulation tool employed in the 
simplification of convection-diffusion problems via averaging processes in one or more of the involved space variables. 
In this sense, simpler formulations of the original partial differential systems are obtained, through a reduction of the 
number of independent variables in the multidimensional situations, by integration (averaging) of the full partial 
differential equations in one or more space variables, but retaining some information in the direction integrated out, 
provided by the related boundary conditions. Different levels of approximation in such mixed lumped-differential 
formulations can be used, starting from the plain and classical lumped system analysis, towards improved formulations, 
obtained through Hermite-type approximations for integrals (Cotta and Mikhailov, 1997). Such approach has been 
already exploited in different heat and fluid flow problems (Cotta and Mikhailov, 1997, Aparecido and Cotta, 1989, 
Correa and Cotta, 1998). 

The Hermite formulae of approximating an integral, based on the values of the integrand and its derivatives at the 
integration limits, are given in the form (Cotta and Mikhailov, 1997):  
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In such a manner, the integral of y(x) is expressed as a linear combination of ( )1iy x − , ( )iy x  and their derivatives, 

( )( )
 1i -y xν  up to order ν=α, and ( )ixy )(ν  up  to order ν=β.  This is called the H , α β  approximation. The resulting 

expression for the H , α β  - approximation is given by:  
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where,     
 

i i i -1h = x - x       ;     ( ) ( ) ( )
( ) ( ) ( )

1 ! 1 !
,

1 ! ! 2 !
Cν

α α β ν
α β

ν α ν α β
+ + + −

=
+ − + +

  (3c,d) 

 
      In the present work, we consider just the two approximations, 0,0H  and 1,1H , given by: 
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which correspond, respectively, to the well-known trapezoidal and corrected trapezoidal integration rules. 

The CIEA is here employed in approximating the formulation for the conduction problem within the solid. 
According to this approach (Cotta and Mikhailov, 1997), the average transversal temperature is to be approximated by a 
Hermite formula for integrals, here by taking the H1,1 approximation, the well known corrected trapezoidal rule. In 
addition, the average transversal wall heat flux shall be approximated by the simplest H0,0  approximation, the 
trapezoidal rule. This H1,1 / H0,0  combined solution does not change the nature of the classical lumped formulation, but 
only slightly modifies the equation coefficients, and is expected to be more accurate than the classical lumped system 
analysis in the applicable range of the governing parameters.  

The transversally averaged wall temperature, Tav, is thus approximated as: 
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The average heat flux is approximated as: 
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An expression for the temperature at y e= − , to be eliminated, is thus obtained: 
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This expression is substituted into the average heat flux expression, eq.(6), providing: 
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Then, the interface condition, eq.(2f), is recalled, yielding: 
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and the interface condition, eq.(2g), is now reformulated as: 
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Clearly, according to the expression above, the boundary condition for the fluid at y=0 was reformulated as a third 

kind boundary condition that includes the participation of the wall through its averaged temperature. When the interface 
temperature, ( ,0, )fT x t , and the average solid temperature, ( , )avT x t , have the same value, the wall does not participate 
and the conventional second kind boundary condition for an imposed heat flux is recovered.  

The energy equation for the solid is now reformulated by taking the average on the transversal direction, operating 
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We can then eliminate the derivative at y =0 and at y =-e by applying the interface conditions, (2g, 2h): 
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or, by recalling the reformulated fluid boundary condition: 
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This equation is followed by the also averaged initial and boundary conditions as: 
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Again, the difference between the average solid temperature and the fluid interface temperature is responsible by the 

coupling of the two processes along the longitudinal coordinate “x”. The problem may now solved in the transversal 
coordinate for the fluid, by employing the conventional integral method, for instance, and thus reducing the problem to 
a pair of coupled partial differential equations for ( ,0, )fT x t  and ( , )avT x t . 

Higher order formulations could be achieved but then the nature of the formulation would somehow change. For 
instance, by introducing the H1,1 approximation also for the average heat flux, the formulation would then incorporate a 
partial differential equation for the temperature at y e= − , which is not entirely eliminated, coupled to the average wall 
and interface temperatures. At the present contribution we have preferred to obtain a simpler formulation for the 
conjugated problem as above described.  
 
4. Solution Methodology 
 

The heat transfer problem within the fluid can be represented by the time-dependent semi-integral form of the 
energy equation, written as:  
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The solution methodology applied to eq.(12) is here illustrated by the 3th-order polynomial Karman-Pohlhausen 

approach for the velocity profile and the 2th-order polynomial for the temperature field. Higher order polynomials for 
the temperature field were here avoided not to introduce the time derivative of the interface temperature in the 
coefficients determination, which would require one more coupling differential equation. The present orders for the 
velocity and temperature fields polynomial approximations were selected from the accuracy analysis of the different 
combinations in the steady-state situation. Thus, the velocity profile is modeled by: 
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With the related boundary conditions given by Eqs. (2e, 2f, and 8), the temperature profile results in: 
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and for the interface temperature 
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Substitution of the polynomial approximations, eqs.(13, 14a), into the integral form of the boundary layer equation, 

eq.(12), yields the partial differential equation for the thermal boundary layer thickness, ( , )t x tδ , as a function of the 
longitudinal coordinate and the time variable, coupled to the average wall temperature. All of the steps in the derivation 
of the solution methodology were accomplished by making use of symbolic computation, as made possible by the 
Mathematica system (Wolfram, 1999). As an illustration of the symbolic computation procedure, we reproduce below 
the obtained partial differential equation that governs the thermal boundary layer thickness, with the time derivative 
provided in explicit form:  

 

 
 

The energy equation for the transversally averaged solid temperature is then symbolically prepared, together with 
the corresponding boundary and initial conditions:  
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Non-zero values for the boundary conditions might be required, due to the singularity at the plate edge or at the 
starting length. Therefore, once the above coupled equations for the thermal boundary layer thickness and average solid 
temperature are numerically solved, we can readily compute the wall and fluid temperatures. Those equations were 
solved by making use of the routine NDSolve of the Mathematica system, and interpolated expressions for the thermal 
boundary layer thickness and for the average solid temperature are then automatically offered by the routine, allowing 
for their computation at any requested position x and time t.  
 
5. Results and Discussion 
 

Following the symbolic derivation through the Mathematica system (Wolfram, 1999), numerical computations are 
performed within this integrated platform. The presently constructed notebook is an extension of a previous one for 
transient external convection without the wall conjugation (Lachi et al., 2006), where a thorough validation and 
numerical analysis of the NDSolve solution of the thermal boundary layer thickness is provided. Here we shall 
concentrate on the study of the wall conjugation effects and the errors involved in the approximate formulation that has 
been proposed. We have considered the analysis of four specific cases with wall participation for two different materials 
(Norcoat and PVC), provided by the pertinent data in Table 1, having air at ambient temperature as the cooling fluid 
and with a step change in time on the uniform heat flux applied at the interface. The common parameters in all five 
cases are given by T∞=20 C, U∞=1 m/s, L=0.1 m, φ =100 W/m2.  

 
Table 1 – Selected test cases and governing parameters 

(Air, T∞=20 C, U∞=1 m/s, L=0.1 m, φ =100 W/m2) 
 

CASE Material e (m) k (W/m C) α (m/s2) 
1 Norcoat 0.007 0.12 1.67 10-4 
2 Norcoat 0.002 0.12 1.67 10-4 
3 Norcoat 0.012 0.12 1.67 10-4 
4 PVC 0.012 0.15 0.11 10-6 

 
For the validation of the CIEA reformulation, we have also implemented the two-dimensional solution of the wall 

heat conduction problem by employing the same routine NDSolve, and using the interface temperature obtained by the 
conjugated problem solution as the boundary condition. Then, the computation of the average temperature distribution 
from the two-dimensional solution provides a direct comparison with the same quantity in the one-dimensional lumped-
differential formulation. Table 2 presents an illustration of the deviations between the two values of the transversally 
averaged wall temperature for the case of a Norcoat wall (case 1) with a 7 mm thickness. For different longitudinal 
positions and time values, the two dimensional and the improved lumped-differential formulations agree to at least three 
significant digits, fairly uniformly within the entire domain.  

 
Table 2 – Comparison of average wall temperatures, Tav(x,t), for  

lumped-differential (1D) and two-dimensional (2D) formulations (case 1). 
 

t [s] 0.25 0.5 0.75 1.0 
x [m] Tav 1D Tav 2D Tav 1D Tav 2D Tav 1D Tav 2D Tav 1D Tav 2D 
0.01 22.159 22.172 23.122 23.144 23.563 23.575 23.765 23.770 
0.02 22.549 22.556 23.878 23.903 24.536 24.553 24.855 24.864 
0.04 22.860 22.856 24.752 24.776 25.882 25.903 26.513 26.527 
0.05 22.925 22.918 24.985 25.007 26.312 26.332 27.105 27.119 
0.06 22.967 22.958 25.148 25.168 26.634 26.654 27.578 27.594 
0.08 23.018 23.007 25.357 25.375 27.076 27.095 28.274 28.291 
0.1 23.045 23.029 25.469 25.478 27.323 27.329 28.684 28.684 
 
Similar comparisons were constructed for the other two cases of the norcoat wall, and as an example we compare 

the three cases in Table 3 for the average temperatures at the time t=1.0 s. All three situations provided demonstrate an 
excellent agreement between the two formulations, but it can be noticed a slight loss of accuracy of the lumped-
differential formulation when the thickness is increased to 12 mm. As for the classical lumped system analysis, the 
present lumped-differential formulation is expected to present a loss of precision as the temperature gradients in the 
transversal direction increase, but in fact the CIEA formulation is not as much influenced by the non-uniform 
distributions as is the classical analysis, since the temperature spatial variations are somehow accounted for by the 
Hermite formulae for integrals. 
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Table 3 – Effect of wall thickness on the average wall temperatures, Tav(x,t),  
for lumped-differential (1D) and two-dimensional (2D) formulations (cases 1, 2 and 3), t=1.0 s. 

 
CASE 2 (e=2mm) 1 (e=7mm) 3 (e=12mm) 
x [m] Tav 1D Tav 2D Tav 1D Tav 2D Tav 1D Tav 2D 
0.01 23.796 23.795 23.765 23.770 23.081 23.136 
0.02 25.166 25.169 24.855 24.864 23.802 23.851 
0.04 27.288 27.291 26.513 26.527 24.842 24.895 
0.05 28.154 28.157 27.105 27.119 25.185 25.237 
0.06 28.935 28.938 27.578 27.594 25.449 25.501 
0.08 30.338 30.341 28.274 28.291 25.827 25.875 

0.1 31.478 31.460 28.684 28.684 26.041 26.071 
 
Figure 2 then illustrates the variation of the interface (solid) and the wall average (dashed) temperatures along the 

plate length, for five different time values (t=0.25, 0.5, 0.75, 1.0 and 1.25 s), from bottom to top. It can be noticed that 
the high heat transfer coefficients near the plate leading edge can bring the interface temperatures to lower values than 
the averaged value. Also, as time progresses, the differences between the local and the average values tend to diminish, 
as the steady-state solution is approached, further favoring the present approximation.  

 

 
 

Figure 2 – Average wall (dashed) and interface (solid) temperatures  
distributions for different times (t=0.25, 0.5, 0.75, 1.0 and 1.25 s,  

from bottom to top), for the Norcoat wall (case 1) 
 
Figure 3 provides the partition of the interface heat fluxes along the plate length, between the wall and the fluid. 

Four different time values t=0.25, 0.5, 0.75, 1.0 s are considered, and their respective results are represented within the 
graph in increasing order with the dash length. Along the plate length, the heat flux to the fluid decreases, following the 
heat transfer coefficient decrease, while the heat flux to the solid increases for the present uniform energy delivery to 
the interface. Along time, as the wall temperature transversal gradients tend to be smoother, as observed from Fig.(2), 
the wall heat fluxes at the interface decrease, while the heat fluxes to the fluid increase. In the early transient, and for 
larger values of the longitudinal coordinate, the energy partition can even favor the solid, as the heat flux to the wall 
crosses over the fluid curve. 

 

 
 

Figure 3 – Heat fluxes distributions at the interface for solid (lower curves) and  
fluid (upper curves) for different time values (t=0.25, 0.5, 0.75 and 1.0 sec),  

in order of dash length, for the Norcoat wall (case 1). 
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All the above results were obtained solely from the one-dimensional lumped-differential formulation for the wall, 
which can only provide information on the average and boundary quantities, temperatures and heat fluxes. However, if 
the knowledge of the local solid temperature is for any reason essential, the two-dimensional analysis can be 
approximately accomplished as above suggested for inspection of the average temperature behavior, employing the 
interface temperature as a boundary condition for the pure heat conduction problem. This allows one to also investigate 
the local behavior of the wall temperature, as illustrated in Fig. (4). For a fixed position x=0.05m, we show the 
transversal profiles of both solid and fluid temperatures for different time values (t=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 
0.9 and 1.0 s). Clearly, one can observe the reduction with time of the wall temperature gradients at the interface, due to 
the progressively smoother temperature profiles across the solid, while the increase of the heat fluxes to the fluid are 
also quite evident from the steeper temperature curves all the way to the steady-state. 

 

 
 

Figure 4 – Local wall (left) and fluid (right) temperatures distributions for  
different time values (t=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 s),  

at x=0.05 m, for the Norcoat wall (case 1). 
 
The effect of varying the wall thickness is again analyzed through Fig. (5) and Fig.(6) for the transversal wall and 

fluid temperature distributions, in comparison with the above mentioned Fig. (4). Figures 5 and 6 are respectively for 
the transversal temperature profiles with a Norcoat wall of thickness e=2mm (case 2) and 12 mm (case 3), again at a 
fixed position x=0.05m and for the same time values above. It can be noticed that the steady-state is reached sooner for 
the thinner wall, figure 5, than for the other two situations. In addition, the wall temperature gradients are less 
pronounced in this case (Fig. (5)) and the interface temperature reaches a larger value. The thicker wall offers a larger 
thermal resistance and results in more pronounced temperature gradients within the solid and the increased thermal 
capacitance leads to a slower evolution to the steady-state solution. 

 

 
 

Figure 5 – Local wall (left) and fluid (right) temperatures distributions for  
different time values (t=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 s), 

at x=0.05 m, for the Norcoat wall (case 2). 
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Figure 6 – Local wall (left) and fluid (right) temperatures distributions for  
different time values (t=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 s),  

at x=0.05 m, for the Norcoat wall (case 3). 
 
The next figure (Fig 7), illustrates the transversal temperature profiles for a material with a considerably smaller 

thermal diffusivity, as represented by the PVC wall (case 4), in comparison with the above mentioned Norcoat wall 
(case 3), both with a 12 mm thickness. Clearly, observing the quite different temperature and time scales employed for 
this visualization, the temperature distributions are smoother in the Norcoat plate case, and in addition the transients are 
faster, as expected. 

 

 
 

Figure 7– Local wall (left) and fluid (right) temperatures distributions for  
different time values (t=360. to 3600.s, intervals of 360 s), at x=0.05 m, for the PVC wall (case 4). 

 
6. Conclusions 
 

The problem of transient conjugated conduction-external convection over a flat plate of finite thickness is 
approximately solved, first by providing an improved lumped-differential formulation for the wall heat conduction 
problem, thus eliminating the transversal coordinate, and then approximating the fluid temperature by a polynomial 
according to the classical integral method for boundary layers. Symbolic computation is employed throughout the 
development of the solution, thus eliminating the cumbersome analysis that in general associated with analytic-type 
approaches. The resulting coupled partial differential equations for the thermal boundary layer thickness and 
transversally averaged wall temperature are then numerically solved along the longitudinal coordinate and the time 
variable, by making use of the routine NDSolve of the Mathematica system. The approach is first validated against the 
two-dimensional wall formulation and a few different physical situations are examined, for different materials and slab 
thicknesses. 

The accuracy level achieved by the improved lumped-differential formulation for this class of problems, 
encourages the use of more accurate solution methodologies for the fluid, as well as the extension of this analysis to 
more involved situations, including different geometric configurations and boundary conditions variations with space 
and time. 
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